
International Training Program (ITP)
Participation Report

² Participant Name : J.B. Brown

² Academic status : Ph.D. candidate, 3rd year

² Home Institute

{ Laboratory of Biological Network Information (Akutsu Laborato ry)
Kyoto University Institute for Chemical Research; Kyoto, Uji, Gokasho 611-0011

² Partner Institute

{ Macromolecular Modelling Group (Knapp Laboratory)
Freie UniversitÄat Berlin; Fabeckstrasse 36a, D-14195, Germany, Berlin-Dahlem

² Duration of program : September, 2009 - November, 2009 (approx. 10 weeks)

Contents

1 Collaborative Research Goal 2
1.1 Background - kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Separation into two classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2
1.3 Quantitative Structural Activity-Property Relationships (QSAR/QSPR) . . . . . . 2

2 Research Developments 3
2.1 Kernel formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The basic kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 The size-scaled kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 The rigid kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 The combination kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 The stereo-aware combination kernel. . . . . . . . . . . . . . . . . . . . . . 7

2.2 Experimental results from the collaboration . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 How to gauge experimental results . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Graphical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Non-research international exchange 9

1



1 Collaborative Research Goal

1.1 Background - kernel methods

In previous work, J.B. Brown has led the development and testing of a computational method for
discerning pairs of stereoisomers using a kernel method [1]. In essence, a kernel method includes a
kernel function which is a numeric value that represents the similarity between two objects. Kernel
functions are designed for applications in a way to extract speci¯c features that the designer feels
are important to the task at hand.

With a proper kernel function to represent similarity between objects, pattern analysis algo-
rithms can then be applied for a variety of tasks. One of the most basic patternanalysis problems
is the 2-type classi¯cation problem. The goal is to predict the class (usually termed \positive" or
\negative") of an unseen data point x 2 X by using a hypothesis functionh(x). X can be a set of
chemical structures, photographs, or any other set of objects of a particular class. h(x) is derived
using some set of available data of typeX .

1.2 Separation into two classes

Recall from linear algebra that the angleµ between two vectorsv1 and v2 is proportional to their
inner product hv1; v2i :

cosµ =
hv1; v2i
jv1jj v2j

In classi¯cation problems, the goal is to derive a weight vectorw and bias b such that:

hw; xi + b > 0

for points in the \positive" class (( x; y) j y = 1), and

hw; xi + b < 0

for points in the \negative " class (( x; y) j y = ¡ 1).
Here, the kernel functions mentioned earlier comes into use. Kernel functions have several

important properties:

² They satisfy K (x; y) = hÁ(x); Á(y)i , which means they are equivalent to transformingx; y 2
X to a higher dimensional vectorial spaceF via a function Á : X ! F .

² They can be applied to non-vectorial data.

² They avoid the problem of inner products on in¯nite-dimensional vectors.

² They require some algorithm to computeK (x; y).

Perhaps the most important point of the discussion here is the following fact:

Derivation of hypothesis h(x) = hw; xi + b using
inner products hx i ; x j i can be rewritten using kernel functionsK (x i ; x j ).

1.3 Quantitative Structural Activity-Property Relations hips (QSAR/QSPR)

The two-class problem described above can be generalized to predict real valuesy 2 < . Thanks
to this generalization, we can predict target properties of compounds that are expressed as real
values. This type of compound analysis is called a Quantitative Structural Activity (Property)
Relationship (QSAR/QSPR). This analysis is important in predicting drug e±cacy, a mongst other
properties. An example of di®erences in topologically identical compounds is givenin Figure 1.
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Figure 1: Two vitamin D ligands, identical in topology yet with very di®er ent target properties.

2 Research Developments

The general idea of the previous research performed [1] is shown in Figure 2(a).Feature vectors
representing counts of molecular ¯ngerprints are built, and the inner product of the featurevectors
leads to a measure of similarity. The actual similarity calculation K (x; y) between two compounds
x,y is actually done by an alternative method; the details are not relevant to this report.

Though the existing kernel function is generally successful in compound classi¯cation and
property prediction, it su®ers from the requirement of matching labels (atom types) at all nodes
in the ¯ngerprint. An example demonstrating the problem is shown in Figures 2(b) and 2(c).

The goal of this international exchangeprogram was to develop a kernel function that uses
maximum common substructure but, instead of graph labels, useselectrostatics to quantify the
similarity betweencompounds.

To overcome the problem demonstrated in Figure 2, host advisor Professor Ernst-Walter Knapp
suggested use of atomic partial charges as a way to analyze molecules. The most popular method
for calculating atomic partial charges is from references [6, 7]. Partial atomic charge maps for the
ester and thioester of Figure 2 were created and are shown in Figure 3, where negative partial
charge is colored red and positive partial charge is colored blue.

Using the partial charge information, ¯ve increasingly sophisticated models were developed.

2.1 Kernel formulations

2.1.1 The basic kernel

The basic kernel simply uses the di®erence in atomic partial charges between atoms inthe maxi-
mum common subgraph of two compounds. The concept of why this kernel is useful is given by
Figure 3: despite a di®erence in labelling, the structure of the two motifs are identical, and should
be incorporated in similarity quanti¯cation.

De¯nition 1 M is a maximum common subgraph (or its approximation) betweentwo chemical
graphsC1 and C2 .

De¯nition 2 P Ca is the partial charge of atoma in compound C .

De¯nition 3 (a; b) 2 M is a corresponding match between atoma in C1 and atom b in C2 .

3



�

�

�

�
(a) (b) (c)

Figure 2: Existing graph kernel methods and their potential problems. (a) In existing methods [1],
a molecule is described by counts of a series of tree-like ¯ngerprints. (b-c) The problem with using
exact tree patterns. An ester (b) and thioester (c) have the same topology but varyby a single
atom label, in which the existing graph methods fail to identify these substructures as similar.
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Figure 3: An ester (left) and a thioester (right). Identical topolgies wit h di®erent atom labels.
(Bottom) Atomic partial charge maps, including all hydrogens.
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benzene; 12 atoms; 12 bonds
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Figure 4: An example case where a molecule scaling coe±cient is necessary for similarity calcula-
tion: benzene and phenylbenzene.

Formula 1 Basic kernel de¯nition

K basic (C1; C2) =
X

(a;b)2 M

®¡j P C a ¡ P C b j
1 (1)

2.1.2 The size-scaled kernel.

It is possible that a small ligand overlaps a much larger ligand or highlyspecialized and complex
drug. In order to reduce the similarity between two compounds when there is a large di®erence in
size, we construct a scaling coe±cient that includes the sizes of the original compounds and the
size of their maximum common subgraph. A simple scenario where this kernel is useful isgiven
in Figure 4 for benzene and phenylbenzene.

De¯nition 4 Let the ®2-scaled overlap between two compoundsC1 and C2 with maximum common
subgraphM , be given by the function

SizeScale(C1; C2) =
µ

2jM j
jC1j + jC2j

¶ ®2

: (2)

Formula 2 The size-scaled kernel is de¯ned as follows:

K size(C1; C2) = SizeScale(C1; C2) ¤ K basic (C1; C2) (3)

2.1.3 The rigid kernel.

Figure 5 demonstrates a molecule with a great number of conformers resulting from a long
aliphatic. The highly °exible chain may contribute less to the molecule's target property. That
is to say, the rigidness of atoms is a key factor in determining their relevance toa similarity
calculation, where large target property di®erences occur when atoms close to the rigid part of
a molecule are stereochemically modi¯ed. Below we formulate a kernel method to account for
rigidity analysis, with an example given in Figure 6.

De¯nition 5 The number of rotatable bonds in the pathP between an atoma and the nearest
rigid atom r :

dist (a; r ) = jP = ( v1 = va ; v2; :::; vr )j (4)

De¯nition 6 An atom scaling e®ect for rigidity:

RigidScale(a) =

(
1 dist (a; r ) · 1

®3
dist (a;r ) dist (a; r ) > 1

(5)
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Figure 5: Five vitamin D ligands that vary only by the length of an aliphat ic chain extended from
the core structure.
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Figure 6: In both molecules, a hydroxyl (-OH) group is present. However, for the larger steroid
sca®old molecule, the hydroxyl group is located several rotatable bonds away from the steroid
sca®old. Accordingly, the relevance of this hydoxyl ¯ngerprint is reduced by Equation (6).
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ibuprofen-1; 33 atoms; 33 bonds
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ibuprofen-2; 33 atoms; 33 bonds
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Figure 7: Atomic partial charge density maps of the two crystallized forms of ibuprofen.

Formula 3 The rigidity kernel

K rigid (C1; C2) =
X

(a;b)2 M

RigidScale(a) ¤ RigidScale(b) ¤ ®¡j P C a ¡ P C b j
1 (6)

2.1.4 The combination kernel.

The combination kernel combines the basic, size, and rigidity kernels:

Formula 4
K comb (C1; C2) = SizeScale(C1; C2) ¤ K rigid (C1; C2) (7)

2.1.5 The stereo-aware combination kernel.

In Figure 7, we present the di®erences in atomic partial charge density for a pair of chiral com-
pounds. Below, we formulate a kernel function which can handle this type of stereoisomerism,
and also generalize the framework to account forcis-trans isomerism.

De¯nition 7 For a stereocenter or cis-trans carbon atom, de¯nes1, s2, s3, (and s4 for stereocen-
ters) as the partial charges in the two-dimensional clockwise arrangement of the atoms attached
to the carbon.

De¯nition 8 A partial charge di®erence vector about a chiral stereocenter h is formed by

vh = < sgn(s1 ¡ s2); sgn(s2 ¡ s3); sgn(s3 ¡ s4) > : (8)

De¯nition 9 For each endt of a cis-trans double bond chain, the partial charge di®erencevector
will be

vt = < sgn(s1 ¡ s2); sgn(s2 ¡ s3) > : (9)

Next, we need a way to score the directional matching (or mis-matching) of di®erence vectors.

De¯nition 10 For stereoisomer atomsa1 2 C1 and a2 2 C2, let v1 and v2 be the di®erence vectors
for each stereocenter. Then de¯ne a function to weight the importance of matching di®erence
vectors:

RotScore(a1; a2) =

(
®s v1 = v2
0 v1 6= v2

; (10)

where ®s 2 f ®h ; ®t g is a free parameter set to®h when processing a pair of chiral stereocenters,
and set to ®t when processing a pair of alkene chain terminal carbons. Finally, de¯ne a function
to use the weighting of Equation (10) when matching stereoisomerism occurs:

7



De¯nition 11 The scaling applied to two stereoisomeric carbonsa1 2 C1 and a2 2 C2 is de¯ned
as

RotScale(a1; a2) =

(
RotScore(a1; a2) stereoT ype(a1) = stereoT ype(a2)
1 otherwise

; (11)

when some functionstereoT ype(a) exists to de¯ne whether an atom a is a chiral stereocenter, an
end of a cis-trans bond, or neither.

Combining the previous de¯nitions, we now formulate an atomic partial charge kernel function
for stereoisomerism:

Formula 5 The stereochemical-aware combination kernel function:

K stereoComb (C1; C2) = SizeScale(C1; C2) ¤
X

(a;b)2 M

¯ (a; b)

¯ (a; b) = RigidScale(a) ¤ RigidScale(b) ¤ RotScale(a; b) ¤ ®¡j P C a ¡ P C b j
1

(12)

2.2 Experimental results from the collaboration

2.2.1 How to gauge experimental results

Two measures are used for assessing QSAR prediction performance. The ¯rst of these,q2, is
the cross-validated version of the standard residualR2 and includes the predictive residual sum
of squares (PRESS). Letyi be sample (compound)i 's known experimental value (activity level
or target property), and let ŷi be its value output by a predictor during cross-validation. If the
known experimental average value is ¹y, then we calculateq2 as follows:

q2 = 1 ¡
PRESS

P
(yi ¡ ¹y)2 = 1 ¡

P
(yi ¡ ŷi )2

P
(yi ¡ ¹y)2 : (13)

Note that PRESS has no upper bound, andq2 can take on negative values[4].
The second metric is the correlationR between the predicted and known experimental values

for a test dataset after a model has been constructed using the full training dataset[9]. Labeling
the average of the predicted values as¹̂y, R is de¯ned as

R =
P

(yi ¡ ¹y)( ŷi ¡ ¹̂y)
p P

(yi ¡ ¹y)2
P

(ŷi ¡ ¹̂y)2
: (14)

The q2 and R metrics are standard for assessing prediction performance using LOO-CV and a
training-test split. Good prediction performance is signalled when the values ofboth metrics are
close to 1. A perfect predictor would have a [q2; R] vector with length

p
2.

2.2.2 Datasets

To test the QSARs, two steroid datasets are used independently to build Support Vector Regression
models.

The ecdysteroid dataset is a collection of 20-hydroxyecdysone agonists that areinvolved in
the control of ecdysis (shedding) and metamorphosis in arthropods. The EC50 value, that is, the
e®ective concentration necessary for 50% of an ecdysteroid to bind to the ecdysteroid receptor and
trigger the biological response, is expressed as a numerical value [2, 8, 10, 5, 12]. Dinan et al.[5]
and Hormann et al.[11] have provided the EC50 values of 108 ecdysis hormones used in activity
prediction research.

Cramer's steroids is a benchmark dataset of 31 steroids used in activity levelprediction re-
search¤ [3, 13, 14]. EC50 values represent concentrations required for 50% of a steroid to bind to
corticosteroid binding globulin (CBG).

¤ A number of structures from Cramer et al. [3] have been corrected by Silverman[13] and Wagener et al. [14]
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Figure 8: Atomic partial charge experimental results for two types of steroid datasets.

2.2.3 Graphical results

Figure 8 shows the experimental results of QSARs built with the proposed kernel functions com-
bined with Support Vector Regression. Despite their simple formulation, the basicand size-
factored kernel functions perform well on the regression tasks. Using the chiral graph kernel
formulation, we were unable to reach a model such thatq2 ¸ 0:5 and R ¸ 0:774 for the ecdys-
teroid reference datasets [5, 11], but the two types of proposed kernels that were tested both
derived models with su±cient performance (not included in Figure 8, right).

As shown in experimental result ¯gures, less than 100% of the training examples were used as
support vectors. This is a positive sign that the atomic partial chargekernels are e±cient, because
good generalization ability is suggested by the optimals models shown in Figure 8.

This research is still at an early stage, but with promising preliminary results. It is also
important to develop a way to use both the graph kernel and the atomic partial charge kernel
such that they receive convex weightings depending on graph properties of the dataset being
analyzed. That is, e®orts should be given to develop a combinined similarity calculation

K̂ (x; y) = ®KGRAPH (x; y) + (1 ¡ ®)K APC (x; y) ; 0 · ® · 1 : (15)

3 Non-research international exchange

Though my time at the Freie UniversitÄat Berlin was largely spent at the research laboratory, the
members of Knapp Research Laboratory made me feel quite welcome and I enjoyed many other
events with the members. Some photos are provided in Figure 9. In addition to newconnections
in Germany, new connections were established with researchers from Mexico, Italy,Poland, India,
Armenia, and Saudi Arabia.
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FU-Berlin institute for Organic Chemistry. Knapp Research Lab individual room s.

Collaborating on development of kernel methods
to analyze steroid structures.

Cooking with students at the research lab to en-
joy movies and dinner together.

Enjoying a cruise through Berlin's Spree river
with host professor Ernst-Walter Knapp.

Playing a game of football with colleagues in
Tiergarten park, located in the center of Berlin.

Figure 9: Photos including research environment and extramural activities.
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